Qualitative aspects for the cubic nonlinear Schrödinger equations with localized damping: Exponential and polynomial stabilization

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Artificial boundary conditions for one-dimensional cubic nonlinear Schrödinger equations

This paper addresses the construction of nonlinear integro-differential artificial boundary conditions for one-dimensional nonlinear cubic Schrödinger equations. Several ways of designing such conditions are provided and a theoretical classification of their accuracy is given. Semi-discrete time schemes based on the method developed by Durán and Sanz-Serna [IMA J. Numer. Anal. 20 (2) (2000), pp...

متن کامل

Dynamical stabilization of solitons in cubic-quintic nonlinear Schrödinger model.

We consider the existence of a dynamically stable soliton in the one-dimensional cubic-quintic nonlinear Schrödinger model with strong cubic nonlinearity management for periodic and random modulations. We show that the predictions of the averaged cubic-quintic nonlinear Schrödinger (NLS) equation and modified variational approach for the arrest of collapse coincide. The analytical results are c...

متن کامل

On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations

We give an error analysis of Strang-type splitting integrators for nonlinear Schrödinger equations. For Schrödinger-Poisson equations with an H4-regular solution, a first-order error bound in the H1 norm is shown and used to derive a second-order error bound in the L2 norm. For the cubic Schrödinger equation with an H4-regular solution, first-order convergence in the H2 norm is used to obtain s...

متن کامل

Exponential growth of solutions for a coupled nonlinear wave equations with nonlinear damping and source terms

In this paper, we study initial-boundary conditions for a coupled nonlinear wave equations with weak damping terms. The exponential growth for suf ciently large initial data is proved.

متن کامل

Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping

In this paper we obtain an exponential rate of decay for the solution of the viscoelastic nonlinear wave equation utt −∆u+ f(x, t, u) + ∫ t 0 g(t− τ)∆u(τ) dτ + a(x)ut = 0 in Ω× (0,∞). Here the damping term a(x)ut may be null for some part of the domain Ω. By assuming that the kernel g in the memory term decays exponentially, the damping effect allows us to avoid compactness arguments and and to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2010

ISSN: 0022-0396

DOI: 10.1016/j.jde.2010.03.023